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The formation of vortex streets behind stationary cylinders is found to be caused by 
an absolute instability in the wake immediately behind the cylinder. The inviscid 
Orr-Sommerfeld equation is used together with measured profiles at Reynolds 
numbers of (a) Re = 56 when the absolute instability provides a Strouhal number of 
0.13; and (b) Re = 140000 providing a Strouhal number of 0.21, both in agreement 
with experimental values. At the subcritical Re = 34 the instability is of the 
convective type ; i.e. the disturbance decays, being convected away once the external 
disturbance is removed, in agreement with experimental observations. Finally, the 
instability of the mode which causes a symmetric array of vortices is shown to be 
always of the convective type. 

1. Introduction 
Steady flow past a circular cylinder is characterized for a wide Reynolds-numbers 

range by the formation of a vortex street in the cylinder wake. Rayleigh (1945) first 
pointed out that formation of the vortex street is related to an instability of the 
cylinder wake. Later, Kovasznay (1949) attributed the vortex-street formation 
entirely to the wake instability, based on experimental observations. The mechanism 
by which the wake instability leads to a vortex-street formation has been illustrated 
by Abernathy & Kronauer (1962). They studied the instability of two infinite vortex 
sheets initially a t  a fixed distance apart using a numerical technique developed earlier 
by Rosenhead (1931). Their simulation demonstrated that the dynamic interaction 
between the two vortex sheets leads to the formation of two rows of ‘clouds of 
vorticity ’, closely resembling the Karmhn vortex street. The results obtained by 
Abernathy & Kronauer, however, do not indicate any preferred vortex spacing or 
frequency of formation like those reported in experiments. More detailed wake 
models than the one used by Abernathy & Kronauer are required to explain the 
preferred frequencies and vortex spacings commonly observed in wakes. For the case 
of a flat plate parallel to a uniform flow, stability calculations using measured 
velocity profiles of the wake far behind the plate have been performed by, among 
others, Sato & Kuriki (1961) (temporal instability) and Gaster (1965) (spatial 
instability). Detailed stability calculations using complex frequencies and wave- 
numbers have been performed by Mattingly & Criminale (1972) for the incompressible 
wake behind a thin airfoil, and by Koch (1985) for the compressible wake behind a 
blunt-edged plate. 

For the case of the wake behind a stationary cylinder Fromm & Harlow (1963), 
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and then Jordan & Fromm (1972), predicted successfully the forces on a circular 
cylinder and the value of Strouhal number by employing the Naviel-Stokes 
equations and a finite-difference scheme. 

A number of investigators have used the inviscid flow equations by modelling the 
wake as two infinitely thin shear layers and introducing separation criteria for the 
boundary layer of the cylinder (Faltinsen & Petterson 1982; Sarpkaya 1979). The 
interaction between the boundary-layer flow and the wake field is of primary 
importance within this approach, which fails to predict a Strouhal number in the 
absence of additional, artificially imposed, criteria. 

In the present paper the linear instability of the wake behind a stationary cylinder 
is analysed by considering the physically relevant singularities of the local dispersion 
relation of measured profiles behind the cylinder. This type of analysis can determine 
the nature of the wake instability, namely whether the wake instability is of the 
absolute, or of the convective type Bers (1983). If the instability is absolute, any 
initial disturbance grows at any fixed location and, after nonlinearities have limited 
the growth of the disturbance, a self-sustained oscillation of the wake is established. 
If, on the other hand, the instability is convective, any initial disturbance grows with 
time, but is concurrently convected away, eventually leaving the wake undisturbed. 
The main finding of the present paper is that formation of the vortex street is due 
to an absolute instability in the symmetric mode of the wake immediately behind 
the cylinder. The frequency of the absolute-instability mode agrees well with the 
experimentally measured frequencies of vortex streets. Such an approach is found 
to be effective for both low and high Reynolds numbers. Two sets of measured profiles 
are analysed. The first set, reported by Kovasznay (1949), are for Re = 56 and the 
mode of absolute instability provides a Strouhal number St = 0.13 in agreement with 
the value of 0.13 reported by Kovasznay (1949) and Roshko (1953). The second set, 
reported by Cantwell (1976), are for Re = 140000 and the mode of absolute 
instability provides St = 0.21, in good agreement with the average value of 0.20 
reported by Roshko (1961). 

It is also found that profiles measured at the subcritial number Re = 34 by 
Kovasznay (1949) provide a convective instability, in agreement with his observations 
of a disturbance decaying once the excitation is removed The antisymmetric 
instability is shown to be always of the convective type. 

Finally, by studying a simple rectilinear profile it is shown that the instability of 
a profile with shear layers of small thickness is of the convective type, and hence is 
a poor model for the wake, while in the limit of zero thickness the problem becomes 
ill-posed. 

2. Stability analysis 
We shall consider the linear instability in the wake behind a stationary cylinder 

of diameter d.  The linearized unsteady flow, modelled as inviscid and incompressible, 
forms on top of the laminar (or pseudo-laminar, for higher Reynolds-numbers) 
time-averaged flow field, which is assumed to be locally parallel. This last assumption 
is the most restrictive one, requiring in essence that at  each section behind the 
cylinder the properties of the wake are adequately represented, locally, by the 
stability properties of a parallel flow having the same average velocity profile. The 
analysis of the wake, therefore, is decomposed into several equivalent parallel-flow 
problems, studied through the inviscid Orr-Sommerfeld equation, resulting in a 
‘strip-theory ’ approach. 
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FIGURE 1 .  Integration countours in (a) the o-plane; (a) the k-plane. 

The effects of viscosity are neglected in the analysis of the parallel flows; the shape 
of the measured profiles, though, depends strongly on the Reynolds number, so 
viscosity indirectly plays a significant role. The results of the present analysis seem 
to justify this approach. 

The linear stability properties of a parallel flow can be studied by considering the 
time and space evolution of a disturbance of finite spatial extent, which starts at time 
t = 0. The stream function representing a linearized disturbance is decomposed into 
an even and an odd part. The even part of the stream function ultimately causes a 
staggered array of vortices (KBrmin street) and will be referred to as the symmetric 
mode, while the odd part, called here the antisymmetric mode, causes two symmetric 
rows of vortices. The stability of each mode is studied separately. 

The criterion for distinguishing between absolute and convective instability in a 
homogeneous medium can be derived using a LaplaceFourier transform method, 
best described by Bers (1983). Here only the main points of the method are outlined, 
and we refer to Bers for a complete discussion of the problem. The criterion can be 
obtained by studying the response $(x,  t )  of the medium to an excitation that is 
localized in space and time. The response $(z, t )  can be obtained as an inverse 
LaplaceFourier integral of the form 

where d(w, k) = 0 is the dispersion relation of the waveguide, w is the frequency and 
k the wavenumber. Finally, L is a proper contour in the o-plane and F the 
corresponding contour in the k-plane. Both w and k are complex and we use the 
subscripts R to rcfer to their real part md I to their imaginary part. 

Causality requires that all singularit,ies must lie in the lower w half-plane, below 
a line Z. In the k-plane we must perform two separate integrations, one for 
left-travelling waves ( x  < 0) and one for right-travelling waves (z > 0). The contour 
for the left-travelling waves we denote by 4 and that for the right-travelling waves 
by F,. Since the disturbance is of finite spatial extent, it has a Fourier transform, 
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FIQURE 2. Plot of w = k* in the w-plane for: -, k, = constant (curves 1-7, starting from 0.2 to 
1.8 with increments of 0.2); ---, k, = constant (curves 8-14, starting from 0.2 to 1.8 with 
increments of 0.2). 

so the real axis F' must be within the region of convergence (ROC) of both left- and 
right-dwelling waves (figure 1). 

A ( w ,  k) plays an important role in determining the form of the instability: the map 
of z through A ( @ ,  k) = 0 should have branches that do not cross F ,  while the map 
of F in the w-plane should lie entirely below the E line. Subject to these restrictions 
we lower the Z line to e', while deforming to P' appropriately, so as to place L' 
(if possible) on the wR axis, in which case a convective instability results. 

If on the other hand the condition that the maps of z' on the upper and lower k 
half-plane do not cross F' is violated, we cannot lower the E' curve below the point 
where such a violation first occurs. The violation occurs when the two branches, F, 
and 4 of the map of E in the k-plane, touch at  a point called the critical point (or 
'pinch point' by Bers [1983]). If the map of the critical point in the w-plane has a 
positive imaginary part, an absolute instability is obtained. If not, the instability is 
of the convective type. 

touch is a double root of the 
dispersion relation. Therefore, at  this point the following relation is satisfied : 

The point where the upper and lower map of 

For an analytic function w(k) condition (2) implies that in the neighbourhood of 
k = k,, w behaves like a quadratic function of k,  

w(k)-w(k,) - 9 (k-k , )2 .  
2! (3) 

An orthogonal grid in the k-plane, therefore, is mapped on the w-plane in the 
typical fashion of a quadratic function (figure 2 after Ahlfors [1966]). Such a criterion 
from the k- to the w-plane is best suited to physical problems, where it is far easier 
to find w as a function of k than the other way around, the reason being that A(w,  
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FIQURE 3. Simple wake profile used in figures 4-7. 

k) is a polynomial function of w resulting from Newton’s law, while it is an arbitrary 
analytic function of k. This implies that for a given k, A ( o ,  k) = 0 can be solved in 
terms of a linear matrix eigenvalue problem, which is also employed here (see 
Appendix). 

It should be noted that this method determines all double roots of the dispersion 
relation, irrespective of whether they are critical points. Therefore, after a double 
root of dispersion relation is determined, it should be verified that this double root 
results from the coalescing of two roots of the dispersion relation originating from 
opposite sides of the real k-axis. 

3. Simple rectilinear wake model 
We consider first the simple rectilinear wake velocity profile shown in figure 3. Such 

a rectilinear model contains the salient features of the wake required for stability 
calculations. This can be verified by comparing the results obtained in this section 
using the rectilinear wake model with results obtained in the following sections using 
measured wake velocity profiles. 

The dispersion relation for the rectilinear velocity profile has been derived for k, 
positive and is given by (symmetric mode) 

d (o ,k )  = A w 2 + B w + C = 0 ,  (4) 

where A = 2[1+ tanh (kh)], (5) 

B = -2{[1 +tanh (kh)] ku,+A,} -[l+tanh(kh)] (2k-A,) 

+A,e-2”(1-h){[l-tanh(kh)]}, (6) 

C = (2k - do) {[1+ tanh (kh)] ku, + A,} - A, e-zk(l-h) {[l- tanh (kh)] ku, - A,} .  (7) 

The parameters h, A,, k, w and u, in (5)-(7) are defined as follows: 

h = h,/H,, (8) 

(9) 

6 = H,-h,, (10) 

k = &Ho, (11) 

0 = GHo/U,,  (12) 

u O =  uA/uO, (13) 

’ 0  = cue- uA) H o / ( 6 u o ) ,  
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FIQURE 4. Map of lines k, = constant in the plane for U,/U,  = 0, h,/H, = 0.3. Curves 1-5 for 
k, = 0 to -0.8 at increments of -0.20 (profile in figure 3). 
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FIGURE 5. Map of lines k, = constant in the w-plane for UJU, = 0, h,/H, = 0.5. Curves 1-7 for 
k, = 0 to -1.2 at increments of -0.20 (profile in figure 3). 

where 6 is the thickness of the shear layer, Ho is the half-width of the wake, U, the 
free-stream velocity, U, the velocity at the centreline, the wavenumber and w" the 
wave frequency. 

By mapping a rectangular grid in the k-plane to its image in the w-plane via the 
A(w, k) = 0 equation, the critical point can be identified by its local resemblance to 
the plot of a quadratic function. The wI us. wR plots for constant k, have a peak of 
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FIQURE 6. Map of lines k, = constant in the w-plane for U J U ,  = 0.10, h, /H,  = 0.3. Curves 1-8 
for k, = 0 to -1.4 at increments of -0.20 (profile in figure 3). 
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FIGURE 7. Map of lines k, = constant in the w-plane for U,/U,  = 0,  h , /H,  = 0.95. Curves 1-7 
for k, = 0 to - 1.2 at increments of -0.20 (profile in figure 3). 

decreasing magnitude as k, becomes more negative, until the double root of the 
dispersion relation is reached, when their shape changes substantially (figure 4). 

After determining the double root of the dispersion relation, it was verified that 
this double root corresponds to the coalescence of two roots of the dispersion relation 
originating from opposite sides of the real-k axis. 

If the critical point is positioned above the wE axis, we have an absolute instability, 
whereas if the critical point is positioned below the wR axis, we have a convective 
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x/d A a b 

2.0 0.53 2.25 0.52 
3.5 0.56 1.60 0.50 
5.0 0.58 1 . 0 0  0.25 
8.0 0.36 0.55 0.25 

20.0 0.20 0.20 0.25 

TABLE 1.  Curve-fitting parameters for Re = 56 

instability. Since i t  is one of the principal points of this paper that vortex formation 
is due to an absolute instability near the cylinder, which turns into a convective 
instability further away from the cylinder, it is worth exploring the properties of this 
simple profile. 

There are two basic parameters : h = ho/H, and uo = U,/ U,,. Figures 4 and 5 show 
an absolute instability when uo = 0 and h = 0.3 (figure 4), or h = 0.5 (figure 5 ) .  For 
u,, = 0.1 and h = 0.3 the critical point moves on the o, axis (figure 6) providing, 
marginally, a convective instability. Figure 7 is for uo = 0 and h = 0.95, corresponding 
to a profile closely resembling two thin shear layers. First we note that the critical 
point is below the wR axis, providing a convective instability. Also, the map of the 
k, axis on the o-plane has a maximum wI value which increases as h increases (figures 
4 and 5 ) ,  tending to infinity as h approaches 1. Within the present context, therefore, 
the problem of two infinitely thin shear layers is ill-posed since the contour cannot 
be properly defined. These two observations should make methods employing 
infinitely thin shear layers suspect with respect to their ability to predict the 
frequency and wavenumber of instability waves. 

This analysis provides the following basic conclusions : profiles with U J U ,  near 
zero, such as those close to the cylinder, support an absolute instability, provided 
that the thickness of the shear layers is not small. In fact, ho/Ho must lie in the range 
0.2-0.8, with a maximum absolute instability at about ho/Ho = 0.4. 

4. Vortex formation at low but above the critical Reynolds number 
We first consider the formation of vortex streets in laminar wakes. Average wake 

velocity profiles were measured at  various distances behind a cylinder by Kovasznay 
(1949). First we use his measured profiles for Reynolds number Re = 56, which is 
above the critical Reynolds-number limit for vortex-street formation of about 40. 

The measured point data were fitted first by a curve 

where A ,  a,  b are curve-fitting parameters. The values of these parameters are given 
for x / d  = 2.0, 3.5, 5.0, 8.0 and 20.0 in table 1. The fitting curve and the point data 
are shown in figures 8 and 9 for x / d  = 3.5 and 8.0 respectively. Similar results are 
obtained for the other sections. 

Stability analysis yielded the following result : for x / d  = 2.0 there is an absolute 
instability at w, = 0.82 with k, = 1.1 .  The corresponding growth rates are 
w1 = 0.037 and k, = - 1.1.  This is shown in figure 10 where the typical shape 
corresponding to dw/dk = 0 is seen a t  the right lower part of the graph. 
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FIGURE 8. Average velocity profile at x/d = 3.5 for Reynolds number Re = 56: experimental 
data (A); fitted curve (-). 

0.5 I I I I I I I I I 
-4.0 -3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 Y / d  

FIGURE 9. Average velocity profile at xld = 8.0 for Re = 56: experimental data (A); fitted curve 
(-). 

As we move away from the cylinder, the critical point moves gradually to lower 
values of wI, eventually crossing down the wR axis, providing a convective instability. 
Then the (q, @,)-graphs are used to find the point of zero temporal growth. Figures 
11-14 provide the stability results for x l d  = 3.5, 5.0, 8.0 and 20.0 respectively. It is 
seen that the critical point moves on the w, axis for x l d  = 3.5, while convective 
instability is obtained for the subsequent sections, whose spatial growth rate - k, 
is reduced the further we move away from the cylinder. This leads to the following 
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FIQURE 10. Map of lines k, = constant in the w-plane for the profile at x ld  = 2.0 and Reynolds 
number Re = 56. k, + 0 (curve 1) ;  -0.50 (curve 2); -0.75 (curve 3); -1.0 (curve 4); - 1 . 1  (curve 
5). 
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FIGURE 11 .  Map of lines k, = constant in the w-plane for the profile at x/d = 3.5 and Re = 56. 
k, = 0 (curve 1); -0.50 (curve 2);  -0.75 (curve 3); -1.0 (curve 4); -1.1 (curve 5). 

instability scheme for vortex formation : immediately behind the cylinder the profile 
supports an absolute instability, causing perpetual motion once excited. As suggested 
by the results of the present analysis, it  appears that the profiles supporting an 
absolute instability correspond loosely to the ‘formation region ’ observed experi- 
mentally, which determines the real part of the frequency (Strouhal number) of the 
instability. The subsequent sections convect instability waves, driven continuously 
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FIQTJRE 12. Map of lines k, = constant in the w-plane for the profile at xld = 5.0 and Re = 56. 
k, = 0 (curve 1);  -0.30 (curve 2); -0.50 (curve 3); -0.75 (curve 4); -1.2 (curve 5). 
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FIQURE 13. Map of the lines k, = constant in the w-plane for the profile at xld = 8.0 and 
Re = 56. kI = 0 (curve 1); -0.1 (curve 2); -0.2 (curve 3). 

by the instability of sections behind the cylinder, so W, remains constant while k,, 
k, are modified as the dispersion relation requires. 

Kovasznay (1949) reports a Strouhal number of 0.13 at Re = 56 and Roshko (1953) 
provides a similar value. As seen from figure 10, a value of W, = 0.82 is obtained for 
the critical point, which corresponds to Strouhal number St = O&X = 0.13, in 
agreement with experiment. 

Table 2 provides the wavelength-to-diameter ratio and the spatial growth rate as 
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FIQURE 14. Map of lines k, = constant in the w-plane for the profile at x/d = 20.0 and Re = 56. 
k, = 0 (curve 1 ) ;  -0.025 (curve 2); -0.050 (curve 3). 

x/d wR wl kR k, hid 
2.0 0.83 0.037 1 . 1  -1.15 5.46 
3.5 0.83 0 1.45 -0.75 4.33 
5.0 0.83 0 1.2 -0.30 5.24 
8.0 0.83 0 1.05 -0.08 5.98 

20.0 0.83 0 0.90 -0.01 6.98 

TABLE 2. Frequency and wavenumber as a function of x/d for Re = 56 

a function of the distance x/d behind the cylinder. It is seen that the growth rate 
diminishes away from the cylinder. We may note here the close qualitative similarity 
between the stability results of the simpler profiles analysed in the previous section 
and the results for the profiles measured by Kovasznay. 

5. Vortex formation at below the critical Reynolds number 
In the same paper Kovasznay (1949) measured velocity profiles for a Reynolds 

number of 34, a value below the critical Reynolds number for vortex-street formation 
of about 40. He reported that, a t  a Reynolds number of 34, the wake would form 
a vortex street only when externally excited, and that the vortex street would decay 
once the excitation was removed. An analysis of the profile at a distance of two 
parameters behind the cylinder was made using the following fitting parameters in 

A = 0.54, a = 1.7, b = 0.50. 
(1): 

The results of the stability calculations are shown in figure 15, where it can be seen 
that the wake is unstable, because the map of the real-k axis in the o-plane lies above 
the real-w axis, but the instability is convective because the critical point of the 
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FIGURE 15. 
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Map of lines k, = constant in the w-plane for the profile at xld = 2.0 and 
k, = 0 (curve 1 ) ;  -0.50 (curve 2); -0.75 (curve 3); -1.00 (curve 4). 
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Re = 34. 
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FIQURE 16. Map of lines k, = constant in the w-plane for the profile at xld = 1.0 and Re = 140000. 
k, = 0 (curve 1 ) ;  -0.50 (curve 2);  -1.00 (curve 3); -1.25 (curve 4); -1.50 (curve 5); -1.75 
(curve 6). 

dispersion relation lies below the real-w axis. Due to the convective character of the 
instability, all disturbances will be convected away eventually leaving the flow 
undisturbed, in agreement with Kovasznay’s observations. Thus, even though the 
wake is unstable, no vortex street is formed, a result that can be explained only 
through investigation of the character of the wake instability. 

Comparing the results of this section with those of $4, we may conclude that when 
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FIQURE 17. Map of lines k, = constant in the w-plane for the profile at x l d  = 2.0 and 
Re = 140000. ki = 0 (curve 1 ) ;  -0.50 (curve 2); -0.75 (curve 3). 
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FIGURE 18. Map of lines k, = constant in the w-plane for the profile at x ld  = 2.0 and Re = 56. 
k1 = 0 (curve 1 ) ;  -0.20 (curve 2); -0.40 (curve 3);  -0.54 (curve 4). Antisymmetric mode. 

the Reynolds number reaches the value required for vortex-street formation, the 
critical point of the dispersion relation in the near wake first acquires a positive 
imaginary part. Thus, an absolute instability in the near wake is established leading 
to the formation of a vortex street, as previously discussed. The Reynolds number 
of the flow, therefore, strongly influences the vortex-street formation through the 
form of the average-velocity profile. 
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xld A a b 

1.0 0.75 4.0 0.08 
2.0 0.60 3.2 0.07 

TABLE 3. Curve-fitting parameters for Profile at Re = 140000 

6. Vortex formation at higher Reynolds numbers 
We now consider the formation of vortex streets in turbulent wakes. A vortex 

street is known to exist in turbulent wakes, similar in form to that observed in 
laminar wakes, provided that the Reynolds number is below a critical limit of about 
3 x lo5. Stability calculations were performed using average-velocity profiles measured 
by Cantwell (1976) for a Reynolds number equal to 140000. The approach adopted 
here is similar to that outlined in Ho & Huerre (1984), namely it is considered that 
the instability waves form on top of a two-dimensional ‘pseudo-laminar’ flow, which 
is the time-averaged flow. 

Stability calculations were performed at two stations in the wake using the 
parameter values given in table 3, the first located one diameter behind the cylinder, 
and the second two diameters behind the cylinder. The results are shown in figures 
16 and 17 respectively. As can be seen in figure 16, at a distance x / d  = 1 behind the 
cylinder an absolute instability exists, which is stronger than that of the laminar 
wake. At a distance x / d  = 2 the instability is convective. Cantwell has estimated the 
formation region length to be about 2.2 diameters. 

Cantwell (1976) reports a Strouhal number of 0.179 based on a free-stream velocity 
uncorrected for blockage effects, while Roshko (1961 ) summarizes results for Reynolds 
numbers near or above the transition Re, reporting a Strouhal number in the vicinity 
of 0.2 for Re = 140000. From figure 16 a value of w, = 1.3 is obtained for the critical 
point, providing Strouhal number St = 0.21. The value of the temporal growth rate, 
wI is 0.087 and of the spatial growth rate k, is - 1.75. Finally, k, = 2.2 providing 
that A/d = 2.85. At x / d  = 2.0 we obtain for the same frequency k, = 1.9, which 
yields h/d  = 3.3. This is very close to the value of 3.24 reported in Tyler (1931). 

The picture, therefore, as indicated by the results for both low and high (but below 
transition) Reynolds number is that of an absolute instability over a short distance 
immediately behind the cylinder, which corresponds to the ‘formation region ’. The 
length of the formation region is reduced as the Reynolds number is increased. The 
frequency of the vortex street is determined in the formation region. Also, the growth 
rate of the predominant instability wave increases with the Reynolds number, as can 
be verified by comparing the results for Re = 56 with those for Re = 140000. 

7. Stability analysis of the antisymmetric mode 
The antisymmetric part of the stream function is also unstable, yielding a 

symmetric arrangement of vortices, rather than the Kbman vortex street. If we 
consider the stability of the profile measured by Kovasznay at x / d  = 2.0 at a 
Reynolds number of 56 (fitting parameters are given in table l),  we find that the 
instability is of the convective type, as shown in figure 18. It should be remembered 
that this profile has an absolute instability in its symmetric mode. The same result 
was found for the antisymmetric mode of the high-Reynolds-number flow. Therefore 

16 PLI 170 



476 G. S. Triantafyllou, M. 8. Triantafyllou and C. Chryssostomidis 
it can be concluded that the symmetric part of a disturbance prevails both in laminar 
and turbulent wakes. As already mentioned, the symmetric-instability mode of the 
wake leads to an antisymmetric vorticity concentration. This implies that, both in 
turbulent and laminar wakes, the antisymmetric vorticity concentration will prevail, 
in agreement with the fact that the Karmhn vortex street is always staggered. 

8. Conclusions 
Stability analysis of measured profiles immediately behind the cylinder showed an 

absolute instability, whose critical point predicts the Strouhal number of vortex-street 
formation: (a) at low but above the critical Reynolds number (Re = 56) the value 
of the Strouhal number is found to be St = 0.13 in agreement with the values 
reported by Kovasznay (1949) and Roshko (1953); (b) a t  high Reynolds number 
(Re = 140000) a value of St = 0.21 is found, in good agreement with the values 
reported by Roshko (1961). 

Within the strip theory applied in this paper, the absolute instability of the near 
wake sets up a self-sustained motion, thus causing a continuous excitation for the 
rest of the wake. The frequency is set, therefore, by the absolute instability of the 
near wake, while the wavenumber varies along the length of the wake, as the local 
dispersion relation requires. 

The analysis of the profiles a t  below the critical Reynolds number (Re = 34) 
showed that the instability is everywhere of the convective type, which agrees well 
with the observation by Kovasznay (1949) that a vortex street forms and lasts as 
long as an external excitation is applied. 

The antisymmetric mode of the wake is found to be always of the convective type, 
so any arbitrary disturbance would invariably evolve into a symmetric one, in 
agreement with experimental observations. 

The analysis of the simple rectilinear profile shows that a small centreline velocity 
and a finite shear-layer thickness provide an absolute instability. Layers of small 
thickness provide a convective instability, while in the limit the peak of the 
convective instability moves towards infinite k ,  numbers and the problem becomes 
ill-posed within the present methodology, since no appropriate contour can be 
defined in the w-plane. This agrees with the linear analysis of two shear layers as 
found, for example, in Abernathy & Kronauer (1962), which fails to provide a 
preferred mode, and the nonlinear simulation does not alter this result, as also shown 
in Abernathy & Kronauer. 

The authors wish to thank Professor A. Bers of M.I.T. for providing many helpful 
suggestions and a preliminary version of Bers (1983). 

Appendix. Solution of the inviscid Orr-Sommeffield equation 

expressed in terms of the stream function + A matrix solution was obtained for the inviscid Orr-Sommerfield equation, 

( k U - w ) ( , - k 2 + ) - k - $ =  d2+ d2 U 0. 

(iY dY2 

In (A 1) @ is an even function of y for the symmetric mode (KarmBn street) and an 
odd function for the antisymmetric mode (symmetric array of vortices) so the 
solution is reduced to y 2 0, while the symmetry or antisymmetry about y = 0 is 
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used instead of a boundary condition. For y sufficiently large, the velocity profile 
is reduced to U ( y )  = U,,, and the curvature of the velocity profile becomes negligible. 
Consequently, the relation 

$(y+S) = e - k b ~ ( y )  (kR 2 0, y % d )  (A 2) 

is applied to truncate the y-domain. A five-point centred finite-difference scheme was 
employed to reduce (A I )  together with (A2) and the symmetry or antisymmetry 
condition into a generalized eigenvalue problem of the form 

wB(4 w = A ( k )  w (A 3) 

where A, B are N x N complex matrices, which are functions of k, and y is the complex 
eigenvector containing the values of the stream functions at the discretization points. 
The eigenvalue with maximum imaginary part is evaluated for any given k. A number 
of 50 discretization points was, typically, sufficient for accurate stability calculations. 
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